

Intelligente Verkeers Regel Installatie

(iVRI) – Fase 2

Deliverable 1ab: IDD Generic-FI

Interface Design Description Generic-FI

Datum: 2 december 2016
Versie: 1.1

 iVRI – fase 2: Deliverable 1ab 2

VOORWOORD

In mei 2016 is opdracht verstrekt door het Ministerie van Infrastructuur en Milieu via het Beter
Benutten Vervolg (BBV) programma aan vier VRA leveranciers om te komen tot een gezamenlijke
definitie van VRA standaarden ten behoeve van connected en coöperatieve functionaliteit.

Dit document vormt Deliverable 1ab van de afgesproken leverdelen in de opdrachtverstrekking,
omschreven als “IDD Generic-FI”.

Deze deliverable beschrijft in het Engels het koppelvlak van het verkeersregeltoestel naar de
verschillende mogelijke C-ITS-applicaties.

Dit document is tot stand gekomen door samenwerking van de vijf leveranciers in de werkgroep
bestaande uit:

Inge Fløan
Eric Koenders

Peter Smit

Wim Nouwens
Jeroen Hiddink

Benno Geels

NB. De rest van dit document is geschreven in het Engels om internationale uitwisseling te ondersteunen.

The rest of this deliverable has been written in English to facilitate international exchange.

 iVRI – fase 2: Deliverable 1ab 3

DOCUMENT CONTROL SHEET

Document versions:

Version Date Author Comment

0.1 2016-06-06 WG2 Initial draft

0.2 2016-06-22 WG2 Rework after review

0.3 2016-06-30 WG2 Rework after review

0.4 2016-07-05 WG2 Rework after review

0.5 2016-07-08 WG2 Rework after review

0.9 2016-07-14 WG2 Final draft

0.91 2016-08-09 WG2 Rework of 0.9 comments

0.92 2016-08-16 WG2 Rework after review meeting

1.0 2016-08-25 WG2 Rework after review

1.1 2016-11-15 WG2 §4.2 : clarified relations between TCP-ports and
security option
§4.3.2 : clarified serverside certificate verification
§4.5: added JSON minimum supported message
size
§4.6. Figure 2: correct presentation/session-layer
§5.5
Clarified replies and events sent in actions
Table 1: added conditions ‘RegistrationTimeout’
and ‘Already Registered’
Table 2: condition “RegistrationRequest.username
= Appl.username” removed, and added action
“Send DeregistrationReply”
§5.7: clarified timing descriptions, added
‘Successful registration interval’
§5.9: back-off: define successful connection, added
reset-condition
§6.3 : Changed ApplicationUsername description.
§6.5 : added additional information to
SessionEvent. Added ranges to
SessionEventCode.
§9.1: added exception ‘socket error’
§9.2: removed 10 sec delay after incorrect login
§9.2: Exception 1: added reference to back off
algorithm
§9.2: exception “No Registration” : concretize alive
timeout reference
§9.2: added exception “deregistration from a not
registered ITS-A”
§9.5: various exceptions: added ‘Close Connection’
action. Removed “mandatory attribute” exception.
Fixed typographical errors

Approval:

 Who Date Version

Prepared

Reviewed

Approved

 iVRI – fase 2: Deliverable 1ab 4

Publication level: Public

Version filename: iVRI2_del_1ab_IDD_Generic-FI_v1.1.docx

 iVRI – fase 2: Deliverable 1ab 5

CONTENT

 Introduction 7
1.1 Overview 7
1.2 Purpose and scope 7
1.3 Advise for the reader 8
1.4 Document conventions 8

 References 9

 Acronyms, abbreviations and concepts 10

 Technical description 12
4.1 Introduction 12
4.2 Network connections 12
4.3 Network security 12
4.3.1 Private network 12
4.3.2 TLS 12
4.4 Data encoding - JSON 13
4.5 Data transport 13
4.6 JSON-RPC usage for X-FI 13

 Functional description 15
5.1 Objects 15
5.2 Time reference 15
5.3 Calendar time (UTC) 15
5.4 Method categories 15
5.4.1 Protocol methods 15
5.4.2 Data access methods 16
5.4.3 Data subscriptions and notifications 16
5.5 Session States 16
5.6 Alive checking 18
5.7 Timing 19
5.8 Protocol versions 19
5.9 Back off procedure 19

 Objects 21
6.1 Template FI Object definition 21
6.1.1 Keywords 22
6.2 Base 24
6.3 Registration 32
6.4 Deregistration 35
6.5 Session 35
6.6 Alive 37

 Methods 38
7.1 Register 38
7.2 Deregister 38
7.3 Alive 39

 Functional use-cases 40
8.1 Establish connection with the Facilities 40
8.2 Break connection with the Facilities 41

 iVRI – fase 2: Deliverable 1ab 6

8.3 Revoke ITS Application authorisation 41
8.4 Check connection health 41

 Exception handling 42
9.1 Network 42
9.2 Session 42
9.3 Protocol compatibility 44
9.4 Timing 44
9.5 Messages 45

 IRS Requirement tracing 47
10.1 TLC-FI 47

 Appendix: JSON-RPC 2.0 Specification 50

 iVRI – fase 2: Deliverable 1ab 7

 Introduction

1.1 Overview
The iTLC architecture [Ref 1] defines several interfaces of the iTLC. Two of these interfaces
have common features, these interfaces are the

 Traffic Light Controller Facilities Interface (TLC-FI), used to interact with a Traffic
Light Controller for instance for acquiring detector status and request actuation of
output signals. (see [Ref 2].)

 Roadside-ITS-Station Facilities Interface (RIS-FI). Used to interact with a RIS for
instance for obtaining positions of C-ITS Vehicles and to distribute events to C-ITS
stations in the range of the RIS.

These two interfaces are shown in the following figure:

TLC Facilities RIS Facilities

RIS-FITLC-FI

ITS Application

uses uses

Figure 1 System overview Facilities Interfaces

The RIS-FI and TLC-FI are robust interfaces between (external) ITS Applications and the
respective facilities.

The TLC- and RIS-FI share common technical requirements and as ITS Applications will
communicate with both, it is chosen to design the interfaces on common technological
base, such as transport protocols and security as well as on a common information
transaction model.

These common functions and interactions are the subject of this document while separate
documents for the TLC ([Ref 4]) and RIS ([Ref 5]) provide domain specific information
description and functional use-cases. The intention is that the specific documents can be
described communication technology agnostic.

In the remainder of this document, when generic traits of RIS-FI and TLC-FI are described,
the Facilities Interface is called the X-FI. Furthermore, Facilities denotes both RIS Facilities
and TLC Facilities.

1.2 Purpose and scope
This document describes the interface design of the X-FI with respect to

 Underlying technologies,

 Information transaction model,

 iVRI – fase 2: Deliverable 1ab 8

 Generic protocol and transaction methods,

 Generic objects,

 Use-cases / interactions and

 Error / exception handling.

1.3 Advise for the reader
It is advised that the reader understands the iTLC Architecture as described in iTLC
Architecture WG3 (Deliverable F) v 1.2, jan. 2016 ([Ref 1]) as well as the requirements in
Beter Benutten Vervolg, project iVRI, Deliverable G2, IRS TLC Facilities Interface v1.2, jan
2016 ([Ref 2]) and Beter Benutten Vervolg, project iVRI, Deliverable G1, IRS RIS Facilities
Interface v1.2, jan 2016 ([Ref 3]).

1.4 Document conventions
To identify an Object and its attributes, the following format is used:

<Object type name>.<attribute name>

For instance for the AliveObject, which has an attribute tick is identified as AliveObject.tick

This document contains decision tables to describe logic, these tables are formatted as
follows:

CONDITIONS

condition 1 N Y Y

condition 2 - Y Y

condition 3 - N Y

ACTIONS

ERROR: failure 1 encountered √

ERROR: failure 2 encountered √

Execute action √

Several CONDITIONS are used to indicate which conditions must be valid for any number
of ACTIONS.
Boolean CONDITIONS are used.

- Y = Yes, the condition is valid
- N = No, the condition is not valid
- - = Conditions doesn’t matter for the actions

The ACTIONS taken are indicated with a checkmark (√)

 iVRI – fase 2: Deliverable 1ab 9

 References

ID Reference
[Ref 1] iTLC Architecture WG3 (Deliverable F) v 1.2, jan. 2016
[Ref 2] Beter Benutten Vervolg, project iVRI, Deliverable G2, IRS TLC Facilities

Interface v1.2, jan 2016

[Ref 3] Beter Benutten Vervolg, project iVRI, Deliverable G1, IRS RIS Facilities

Interface v1.2, jan 2016

[Ref 4] Beter Benutten Vervolg, project iVRI – fase 2, Deliverable 1a IDD TLC

Facilities Interface v1.1, dec 2016

[Ref 5] Beter Benutten Vervolg, project iVRI – fase 2, Deliverable 1b IDD RIS

Facilities Interface v1.0, dec 2016
[Ref 6] JSON-RPC 2.0 Specification

http://www.jsonrpc.org/specification
[Ref 7] The Transport Layer Security (TLS) Protocol Version 1.2

RFC 5246, https://tools.ietf.org/html/rfc5246
[Ref 8] The JavaScript Object Notation (JSON) Data Interchange Format

 RFC 7159, https://tools.ietf.org/html/rfc7159
[Ref 9] IRS Security v1.1, oct 2016
[Ref 10] Uniform Resource Identifier (URI): Generic Syntax, RFC 3986

 https://www.ietf.org/rfc/rfc3986.txt

http://www.jsonrpc.org/specification
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc7159
https://www.ietf.org/rfc/rfc3986.txt

 iVRI – fase 2: Deliverable 1ab 10

 Acronyms, abbreviations and concepts

Acronyms and abbreviations

C-ITS Cooperative ITS functionality for exchange of data between in-
vehicle and/or road side devices making use of either cellular
or short range wireless communication

IDD Interface Design Description

IRS Interface Requirements Specification

iTLC Intelligent TLC performing traffic light controller functions and
allowing for ITS applications

ITS Intelligent Transport Systems

ITS Station Functional entity specified by the ITS station reference
architecture (see [Ref 1])

ITS-A ITS Application

ITS-CLA ITS Control Application

ITS-CRA ITS Consumer Application

ITS-PRA ITS Provider Application

iVRI See iTLC

RIS Roadside ITS Station

TLC Traffic Light Controller; controls signals of one or more
intersections

UTC Coordinated Universal Time

 iVRI – fase 2: Deliverable 1ab 11

Concepts

Traffic Control
Application

Application which implements a traffic control algorithm and is
able to request signal group states

ITS Control
Application

A Traffic Control Application which uses TLC- and/or RIS-
interfaces

ITS Application An application which supports one or more ITS use-cases.
Range of possible ITS Applications include an ITS Control
Application

TLC Facilities Component providing facilities of a TLC to users (internal
and/or external). Includes amongst others:

 Access to information from the TLC

 Services to trigger actuators

RIS Facilities Component providing facilities of a RIS to users (internal and/or
external).

 iVRI – fase 2: Deliverable 1ab 12

 Technical description

4.1 Introduction
The X-FI allows ITS Applications to access data stored in a TLC or RIS through an Internet
Protocol based network. Multiple ITS Applications can interact with the TLC concurrently.

4.2 Network connections
The X-FI protocol is based on a bi-directional connection using TCP/IP. The Facilities offers
a TCP port at which it listens to socket connections. ITS Applications are aware of the TLC
IP address and TCP port prior to deployment.

Depending on the specific site security implementation (see [Ref 9]), communication over
the TCP port may or may not need to be secured.

Default TCP ports for the different Facilities are listed in the following table:

Facilities Port

TLC Facilities (TLS) 11001

TLC Facilities (no security) 11501

RIS Facilities (TLS) 12001

RIS Facilities (no security) 12501

4.3 Network security
The security of connections between an ITS Application and the Facilities and therefore the
privacy, authenticity and integrity of the data exchanged using the X-FI is ensured through
means of a (Virtual) Private Network and/or Transport Layer Security (TLS).

Which of the methods is used depends on the situation and security requirements.

4.3.1 Private network
The ITS Application(s) and the Facilities are placed within a private network (See [Ref 9]).

VPN ensures confidentiality (secure against eavesdropping) and integrity (secure against
data manipulation) against systems outside the private network when using unsafe
underlying networks to communicate.

Data exchanged within the private network is not confidential nor guarded against
manipulations, so it is required that the ITS Applications used within one VPN are well-
behaved / certified and that there is no need to protect these applications from other
applications within the private network.

4.3.2 TLS
The TLS protocol creates a secured channel between a single ITS Application and the
Facilities. The channel created is confidential and the data integrity is assured against other
applications communicating with the Facilities within the same private network.

At a minimum TLS version, 1.2 is used, with server-side certificate verification: the ITS
Application can verify the authenticity of the Facilities with a certificate.
This implies:

 private key handling

 certificate deployment

 iVRI – fase 2: Deliverable 1ab 13

There is no need for the Facilities to authenticate the ITS Application in this stage as this is
done separately within the application layer (username, password) after the secured
channel has been established, please refer to 8.1 for the use-case describing this
procedure. Chosen security shall be based on recommendations in RFC7525
(https://tools.ietf.org/html/rfc7525).

The following cipher suites are recommended by RFC7525. The Facilities determines which
cipher is used.

 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

4.4 Data encoding - JSON
All data exchanged is encoded using JavaScript Object Notation (JSON) (see
http://www.json.org/), which is a flexible lightweight, versatile data-interchange format easy
to read for humans and easy to parse by computers.

“An object is an unordered collection of zero or more name/value pairs, where a name is a
string and a value is a string, number, Boolean, null, object, or array.” (See [Ref 8])

For the following types (case insensitive) as used in the Object-definitions, the addition to
the JSON definition in [Ref 8] is:

Float

 [minus] int [frac]

Integer

 [minus] int

4.5 Data transport
JSON-RPC is used as transport protocol, this is defined in chapter 11.
The minimum supported JSON-RPC message size is 32kBytes.

4.6 JSON-RPC usage for X-FI
JSON-RPC is an Application layer protocol. It assumes an underlying stream connection
between two peers.

The ITS Application and Facilities will both act as a JSON-RPC client and server using one
TCP session.

(1) The ITS Application client accesses data and sets subscriptions in the Facilities
server. The server in the Facilities responds to these requests, possibly with
accompanying data. Protocol handling such as authentication and authorisation and
alive checking takes place.

(2) The Facilities client sends notifications with data the ITS Application needs to

receive and executes protocol handling such as alive checking.

https://tools.ietf.org/html/rfc7525
http://www.json.org/

 iVRI – fase 2: Deliverable 1ab 14

TCP-server TCP-client

JSON-RPC 2.0

server

JSON-RPC 2.0

client

RIS-/TLC-Facilities ITS-Applicationuses

connect

reply

Transport

Presentation /
session

Application

request

notification

client serverreply

request

notification

Figure 2 Network layers

 iVRI – fase 2: Deliverable 1ab 15

 Functional description

5.1 Objects
The RIS and TLC Facilities exchange different types of information with ITS Applications.
The information is exchanged as TLC and/or RIS Objects.

This document uses the name FI Object to define objects common for TLC and RIS as well
as to describe traits common for a TLC or RIS Object.

There are two categories of FI Objects:

 FI State objects. These objects describe physical or logical entities and their states.
The objects are uniquely identifiable and typically exists throughout the lifetime of
the RIS or TLC instance. Examples of such objects are signal groups and detectors
containing states such as external signal group state and detection input state.

 FI Event objects. These objects convey the occurrence of a specific event related
to a specific FI State object. These objects can be seen as generated by FI State
Objects. Such an event can for instance contain a vehicle message (KAR or C-ITS)
or a speed and length detected by a loop detector.

5.2 Time reference
When State Objects are being synchronized or Event Objects are sent, a time reference
object is always sent. Both the Facilities and the ITS-A sends this object. The time
reference contains the current relative time-tick of the sender.

The relative time-tick is an ever-increasing unsigned integer value. Every increment of 1 of
the timer-tick corresponds with 1ms incremented time of the sender.

The time-tick is a 32-bit unsigned integer

 Range: 0 to 4294967295

 Always incrementing

 On overflow, the value takes actual interval into account and wraps properly back to
a value making sure that it is always possible to deduct the previous interval.

A running time-tick is independent of updates of the calendar time.

5.3 Calendar time (UTC)
Both an ITS-A and Facilities maintain a notion of the calendar time, the calendar time is
expressed as the UTC time. The UTC time gives the actual UTC time of the sender (in ms
resolution). There may be jumps in this time as it is being kept up-to-date by for instance
NTP.

5.4 Method categories
The following categories of methods exist within the X-FI:

1. Protocol methods
2. Data access methods
3. Data subscriptions and notifications

5.4.1 Protocol methods
The protocol methods manage and support the protocol connections, such as listing
protocol methods and object types, authentication and authorisation methods, activation
methods for ITS Control Applications and alive checking.

 iVRI – fase 2: Deliverable 1ab 16

5.4.2 Data access methods
These are methods used to read, update, create and delete data of the Facilities.
TLC Objects are accessed, such as signal group status, intersection modes and detection
data. RIS Objects are accessed, such as Events and ITS Stations.

5.4.3 Data subscriptions and notifications
Subscription methods are used to manage subscriptions to changes of FI State Objects
and/or generation of FI Event Objects. The notification methods convey the changed FI
State objects or the generated FI Event Objects.

When an ITS Application owning a subscription is disconnected from the Facilities or an
Alive error occurs, the subscriptions will be removed by the Facilities and the ITS
Application needs to subscribe to the requests again when it reconnects.

5.5 Session States
An ITS Application can connect to the Facilities to create a session. The following diagram
shows the states of such an application.

Disconnected

Socket open

Registration OK

Keep alive error
Deregistered

Authorisation revoked Connected

Keep alive timeout

Socket close

Socket close

Figure 3 Session state diagram

The transition of an Application object between these states is described by the decision
tables below:

 iVRI – fase 2: Deliverable 1ab 17

Table 1 Application in session state Disconnected - Facilities decision table

CONDITIONS

Application session state =
Disconnected

N Y Y Y Y Y Y Y Y

RegistrationRequest Received - N Y Y Y Y Y Y N

Application registration timeout Y

RegistrationRequest.version = supported - - N Y Y Y Y Y -

RegistrationRequest.username =
Application.username

- - - N Y Y Y Y -

Application.username already registered N Y -

RegistrationRequest.password =
Application.password

- - - N Y Y - -

RegistrationRequest.type =
Application.type

- - - - - N Y - -

ACTIONS

invalid protocol
Send error response with
ProtocolErrorCode = InvalidProtocol

 √

unknown application username
Send error response with
ProtocolErrorCode = NotAuthorised

 √

invalid password
Send error response with
ProtocolErrorCode = NotAuthorised

 √

invalid role
Send error response with
ProtocolErrorCode = NotAuthorised

 √ √

Create unique session identifier √

Set Application session state =
Connected

 √

Send RegistrationReply √

Close socket √ √ √ √ √ √

Log the state transition. √

Log error situation √ √ √ √ √ √

 iVRI – fase 2: Deliverable 1ab 18

Table 2 Application in session state Connected - Facilities decision table

CONDITIONS

Application session state = Connected N Y Y Y Y Y

Alive check = OK - N Y - Y Y

Authorisation revoked - - N Y N N

RegistrationRequest received - - N - Y N

DeregisterRequest received - - N - Y

ACTIONS

Alive check failed √

authorisation revoked
Send SessionEvent with SessionEventCode =

Deregistered

 √

application is already Connected
Send error response with ProtocolErrorCode =
NotAuthorised

 √

Send DeregisterReply √

Set Application session state = Disconnected √

Log the state transition. √

 Terminate session, close socket √ √ √

 Log error situation √ √ √

5.6 Alive checking
The Alive checking mechanism is part of the Protocol methods. An ITS Application which
has been registered must continuously send an Alive message and it assumes that it
receives a similar alive message from the Facilities with the same interval. The required
timing is defined in 0.

It is the responsibility of the sender of the Alive messages that the underlying system is
alive and functioning properly. When the underlying system is not functioning properly to
handle the requests at the interface that the Alive message should not be sent even if the
Alive generation procedure can function in isolation.

If any of the involved parties fails to receive the message from the other within 2.5 * interval,
the verifying party will assume the connection broken and may break off the connection.

The Alive check starts after an application has successfully logged in.

As part of the Alive checking, the sender provides the following objects:

- Actual UTC time (in milliseconds)
- Actual time-tick (in milliseconds)

 iVRI – fase 2: Deliverable 1ab 19

5.7 Timing
This section contains timing parameters.
Table 3 Timing parameters

Item Time Description

Alive interval ITS-CLA
(both directions)

2s Time between alive messages between an ITS-CLA
and the Facilities

Alive interval ITS-A
(both directions)

10s Time between alive messages between a non-ITS-
CLA application and the Facilities

Successful registration interval 42s Time between successful Registration requests. When
an ITS-A is disconnected, it shall wait this time before
trying to Register again.

5.8 Protocol versions
The TLC-FI and the RIS-FI both implement a certain version of the X-FI protocol definition.
The versioning scheme of the protocol definition is as follows: major.minor.revision

 Description

major Used to indicate major technical or functional change to the protocol.

Each IDD of a TLC-FI or RIS-FI shall identify compatibility of the protocol,
methods and objects.

All ITS-A’s shall be able to communicate with Facilities using the same major
version.

Possibly breaking backwards compatibility.

minor Increasing values are used to indicate minor changes to the protocol-definition.

Compatibility is guaranteed

revision Minor changes to specification, clarifications and typographical errors.

Compatibility is guaranteed

An ITS Application is responsible for using a proper protocol version when communicating
with the Facilities. In 9.3 exception handling for differences in the protocol versions are
handled.

An X-FI implementation shall reject connection by ITS-A’s using unsupported protocol
versions. The X-FI defines which version of this Generic-FI document is used and which
versions are supported / unsupported.

5.9 Back off procedure
It is possible that an ITS-A cannot connect (failure during TCP socket connect, TLS-
negotiation or RegistrationError) with the Facilities, in this case it will follow a back off
strategy when trying to reconnect. This strategy shall involve a relatively quick retry
mechanism the first times it fails and the time between connection attempts shall increase
until a maximum. The minimum time an ITS-A shall wait to reconnect is defined in the
following table:

 iVRI – fase 2: Deliverable 1ab 20

count minimal retry-timeout

1 .. 5 1 sec

6..10 2 sec

11..20 5 sec

21..25 30 sec

>25 60 sec

The minimal retry-timeout will be reset to the value belonging with 'count 1...5' when a
successful connection (Registration succeeded) is created."

 iVRI – fase 2: Deliverable 1ab 21

 Objects

This chapter describes Object-definitions of types used in both TLC-FI and RIS-FI.

6.1 Template FI Object definition
Definition of FI Objects are described by using the following standard notations.

<OBJECTNAME>

Descriptive name Short name of object type

Definition Definition of the object; where applicable
including usage of the object and its attributes

Representation One of the standardized types (see section 0) optional additional description

Range From X to Y range may include keywords like
“ENUM” (see section 6.1.1)

Unit unit, where applicable e.g. ‘m/s’ or ‘second’

 iVRI – fase 2: Deliverable 1ab 22

<COMPOSITE_OBJECT>

Descriptive name CompositeObject

Definition Text describing the composite object, in this
case this would be something like “A general
object containing other objects”.

Access Defines access rights to the Object for each
application type. Access right is defined by

R = Read, the application type is allowed to
read this object. Actual access restriction may
apply for each attribute.

W = Write, the application type is allowed to
write this object. Actual access restriction may
apply for each attribute.

Representation {

meta {

 ObjectId id

}

state {

 Objectname a R/W

}

 Objectname b

 Objectname c[]

}

Representation may include keywords
like “CHOICE” or “ENUM”.

Keywords ‘meta’ and ‘state’ are
optional and can be used according to
section 6.1.1.

With each attribute, access rights
(R/W) may be defined. An application
type allowed to write an object may
only write attributes that are labelled
W

an attribute may contain an array of
objects, this is indicated with the
square brackets ‘[‘ and ‘]’

Range N/A

Unit N/A

6.1.1 Keywords
Meta
The meta keyword defines the scope within an Object-definition in which meta-attributes
are defined, for example:

Meta {
ObjectID id
String name
…

}
The meta-data is returned as reply after explicit ReadMeta request.
During JSON-encoding, the keyword “meta’ will not be included in the JSON-stream.

 iVRI – fase 2: Deliverable 1ab 23

State
The state-keyword defines the scope within an Object-definition in which state-attributes are
defined, for example:

State {
SignalGroupState requestedState…
FaultState fault
}

The attributes within the state-scope will be returned as part of an ObjectStateUpdate
notification.
During JSON-encoding, the keyword “state’ will not be included in the JSON-stream.

ENUM
attribute is of type Integer, with range according to specified enumeration

CHOICE
attribute of one of the type Objects as specified in the choice-scope

abstract
Referred object cannot be instantiated directly, use CHOICE-keyword to indicate possible
concrete object types

<OPT>
All object attributes are mandatory, except for attributes marked with the keyword <OPT>,
they may be omitted.

E.g. the elevation attribute is optional:

{
Float latitude

Float longitude

Float elevation <OPT>

}

If for a mandatory attribute the value is not known, this must be indicated by using the
attribute values indicating “unknown” when it exists. Otherwise the JSON value null shall be
used.

<Object-Type>
The description contains generic types which contains reference to a specific instance of an
ObjectType. To explicitly define which object-type the attribute must contain, the keyword
<object-type> is added to the attribute type.

E.g. the intersection attribute of the following definition must contain Object identifiers
(ObjectID) referencing an object of type Intersection.

{
Meta {
 ObjectID id
 ObjectID<Intersection> intersection
}

 }

 iVRI – fase 2: Deliverable 1ab 24

6.2 Base

Length

Descriptive name Length

Definition Length.

The value shall be set to null if the information is unavailable.

Representation Float

Range 0 to 429496729.5

Unit meter

Location

Descriptive name A geographical location

Definition This object describes a WGS84 location

Representation {

Float latitude

Float longitude

Float elevation <OPT>

}

Range latitude from -90.000000 to 90.000000

longitude from -180.000000 to 180.000000

elevation from -100.000 to 8000.000

Unit latitude in degrees

longitude in degrees

elevation in meters

 iVRI – fase 2: Deliverable 1ab 25

ObjectData

Descriptive name Object update

Definition An object describing the data of one or more objects. The ObjectData is the
contents of the Object except the Meta{} scope.

The update of all objects mentioned in objects is atomic.

The ticks attribute defines the tick at which the data update is sent.

Representation {

ObjectReference objects

abstract ObjectDataContent data[]

Ticks ticks

}

Range N/A

Unit N/A

ObjectDataContent (abstract)

Descriptive name Object data

Definition Abstract object type to group all data of objects. The contents is defined by the
object itself containing all attributes except the Meta{} scope.

Representation N/A

Range N/A

Unit N/A

 iVRI – fase 2: Deliverable 1ab 26

ObjectEvent

Descriptive name Object event update object

Definition An object describing an update containing events generated from one or more
objects.

ObjectEventContent is an abstract type which can contain events generated by all
objects.

The ticks is the time at which the data of the events is detected.

Representation {

ObjectReference objects

abstract ObjectEventContent events[]

Ticks ticks

}

Range N/A

Unit N/A

ObjectEventContent (abstract)

Descriptive name Object event data

Definition Abstract object type that is used to group all event data objects can generate. The
contents is defined by the object itself.

Representation N/A

Range N/A

Unit N/A

 iVRI – fase 2: Deliverable 1ab 27

ObjectID

Descriptive name Object Identifier

Definition A unique identifier for an object instance per ObjectType.

Recommendation is to use functional names of the objects, for instance “D02”
for a detector, signal group “FC02”

Representation String

Range Allowed characters: ‘a-z’ (ASCII 97 through 122), ‘A-Z’ (ASCII 65 through 90), ‘0-
9’, ‘_’ (underscore, ASCII 95) and ‘–‘ (hyphen, ASCII 45).

Unit N/A

ObjectMeta

Descriptive name Object Meta data

Definition An object describing the Meta data one or more objects. The ObjectMeta is the
contents of the Meta{} scope identifier. Of the Object

The ticks attribute defines the tick at which the data update is sent.

Representation {

ObjectReference objects

abstract ObjectMetaContent meta[]

Ticks ticks

}

Range N/A

Unit N/A

ObjectMetaContent (abstract)

Descriptive name Object meta data

Definition Abstract object type to group all meta data of objects. The contents is defined by
the Meta{} scope identifier of the object

Representation N/A

Range N/A

Unit N/A

 iVRI – fase 2: Deliverable 1ab 28

ObjectReference

Descriptive name Object reference

Definition A reference to a number of objects of the same type

Representation {

abstract ObjectType type

ObjectID ids[]

}

Range N/A

Unit N/A

ObjectStateUpdate

Descriptive name Object state update

Definition An object describing a state update of one or more objects. The ObjectState is the
contents of the State{} scope of the objects.

The update of all objects mentioned in objects is atomic.

Representation {

ObjectReference objects

abstract ObjectStateUpdateContent states[]

}

Range N/A

Unit N/A

ObjectStateUpdateContent (abstract)

Descriptive name Object state

Definition Abstract object type to group all states of objects. The contents is defined by the
State{} scope identifier of the object.

Representation N/A

Range N/A

Unit N/A

 iVRI – fase 2: Deliverable 1ab 29

ObjectStateUpdateGroup

Descriptive name Group Object state update

Definition This object is used to define a group of object state updates.

The different state updates are in the update attribute. The ticks attribute defines
the tick from which the states in the update are valid.

Representation {

ObjectStateUpdate update[]

Ticks ticks

}

Range N/A

Unit N/A

ObjectType (abstract)

Descriptive name Object type

Definition Abstract object type to group the types of objects supported by a Facilities
Interface. Each Facilities Interface implements its own types.

Representation N/A

Range N/A;

Unit N/A

 iVRI – fase 2: Deliverable 1ab 30

ProtocolErrorCode

Descriptive name Error code

Definition Error code used for protocol requests, this is an extension of JSON –RPC errors being
passed as the code attribute of an error object. See section 11.

Representation Integer

Range ENUM {

Error (0)

NotAuthorised (1)

NoRights (2)

InvalidProtocol (3)

AlreadyRegistered (4)

UnknownObjectType (5)

MissingAttribute (6)

InvalidAttributeType (7)

InvalidAttributeValue (8)

InvalidObjectReference (9)

}

0 through 999 : Generic Error codes
1000 through 1999 : TLC-FI Error codes
2000 through 2999 : RIS-FI Error codes

Unit N/A

SessionID

Descriptive name Session Identifier

Definition An identifier unique for a session with the Facilities.

This is a specific type of ObjectID used only between two peers, other ITS-A cannot
use this ID to obtain information about the session.

Representation See ObjectID

Range See ObjectID

Unit See ObjectID

 iVRI – fase 2: Deliverable 1ab 31

Speed

Descriptive name Speed

Definition Speed value in meters per second.

When the information is not available, the value shall be set to null.

Representation Float

Range 0.0 to 99.0

Unit meter / second

Ticks

Descriptive name A time represented as a number of ticks

Definition A tick is the basic unit of relative time for an application and a Facilities Interface,
per session (values between sessions are not related). The value wraps around
when the maximum is reached.

Representation Integer

Range From 0 to 4294967295

Unit 1 millisecond

Timestamp

Descriptive name A time stamp

Definition The number of milliseconds since 1-1-1970 00:00:00 UTC

Representation Integer

Range From 0 to 18446744073709551615

Unit 1 millisecond

 iVRI – fase 2: Deliverable 1ab 32

6.3 Registration

RegistrationRequest

Descriptive name A registration request

Definition This object describes the contents of a registration request

Representation {

ApplicationUsername username

ApplicationPassword password

ApplicationType type

ProtocolVersion version

ApplicationURI uri

}

Range N/A

Unit N/A

RegistrationReply

Descriptive name A registration reply

Definition This object describes the contents of a registration reply. The sessionid is a
unique identifier created by the Facilities to identify this session. All session
communication uses this identifier.

facilities : reference to the Facilities with which this session is active

Representation {

SessionID sessionid

ObjectReference facilities

ProtocolVersion version

}

Range N/A

Unit N/A

 iVRI – fase 2: Deliverable 1ab 33

ApplicationPassword

Descriptive name Application password

Definition Definition of an application’s password

Representation String

Range Values 32 through 126 from the ASCII character set, except ‘ ” ’ (double quotes,
ASCII 34) and “,“ (comma, ASCII 44)

Unit N/A

ApplicationURI

Descriptive name Application uniform resource identifier.

Definition Gives information of an application.

Representation String

Range Values 32 through 126 from the ASCII character set, except ‘ ” ’ (double quotes,
ASCII 34) and “,“ (comma, ASCII 44)
AND
Further limited by the characters allowed by the URI generic syntax in [Ref 10]

Unit N/A

ApplicationUsername

Descriptive name Application username

Definition Defines the username of an application. Is used by registration to create a
session. The username is not case-sensitive.

Representation String

Range Allowed characters: ‘a-z’ (ASCII 97 through 122), ‘A-Z’ (ASCII 65 through 90), ‘0-
9’, ‘_’ (underscore, ASCII 95) and ‘–‘ (hyphen, ASCII 45).

A username always starts with a letter.

Unit N/A

 iVRI – fase 2: Deliverable 1ab 34

ApplicationType

Descriptive name Application types

Definition Consumer: is allowed to read and subscribe to changes of FI Objects

Provider: has the same rights as a consumer, but can in addition provide data to the
Facilities through the X-FI

Control: has the same rights as a Provider, but can in addition control exclusive
resources of the Facilities through the X-FI

Representation Integer

Range ENUM {

Consumer (0)

Provider (1)

Control (2)

}

Unit N/A

ProtocolVersion

Descriptive name Protocol version

Definition Structure containing the protocol version.

Representation {

Integer major

Integer minor

Integer revision

}

Range major: 0 – 1000
minor: 0 – 1000
revision: 0 - 1000

Unit N/A

 iVRI – fase 2: Deliverable 1ab 35

6.4 Deregistration

DeregistrationRequest

Descriptive name A de-registration request

Definition This object describes the contents of a de-registration request.

Representation {

}

Range N/A

Unit N/A

DeregistrationReply

Descriptive name A deregistration reply

Definition This object describes the contents of a deregistration reply. The result is empty.

Representation {

}

Range N/A

Unit N/A

6.5 Session

SessionEvent

Descriptive name A session event

Definition This object describes an event generated within a session.

Representation {

SessionEventCode code

SessionEventInformation info <OPT>

}

Range N/A

Unit N/A

 iVRI – fase 2: Deliverable 1ab 36

SessionEventCode

Descriptive name Session event code

Definition Code defining an event for the Session.

Representation Integer

Range ENUM {

Deregistered (0)

FacilitiesStopping (1)

}

0 through 999 : Generic codes
1000 through 1999 : TLC-FI codes (see explanations in [Ref 4])
2000 through 2999 : RIS-FI codes (see explanations in [Ref 5])

Unit N/A

SessionEventInformation

Descriptive name A session event information object

Definition This object describes additional information related to a session event. Which
object and attribute caused the event.

Attribute contains the string representing the attribute.

Representation {

ObjectType type

ObjectID id

String attribute

}

Range N/A

Unit N/A

 iVRI – fase 2: Deliverable 1ab 37

6.6 Alive

AliveObject

Descriptive name An alive object

Definition This describes an Alive object

Representation {

Ticks ticks

Timestamp time

}

Range N/A

Unit N/A

 iVRI – fase 2: Deliverable 1ab 38

 Methods

7.1 Register
This method is used to register an Application with the Facilities.

Request:
Method: Register

Parameter name Type Description

params RegistrationRequest Registration object containing login information

Result:

Parameter name Type Description

result RegistrationReply Result of the registration request

Error:

Parameter name Type Description

code ProtocolErrorCode Error code

message String optional message

7.2 Deregister
This method is used by an ITS Application to de-register from the Facilities.

Request:
Method: Deregister

Parameter name Type Description

params DeregistrationRequest Deregistration object containing logoff
information

Result:

Parameter name Type Description

result DeregistrationReply Result of the de-registration

Error:

Parameter name Type Description

code ProtocolErrorCode Error code

message String optional message

 iVRI – fase 2: Deliverable 1ab 39

7.3 Alive
This method is used by an ITS Application and the Facilities to send Alive messages to the
peer.

Request :
Method: Alive

Parameter name Type Description

Params AliveObject Alive object

Result:

Parameter name Type Description

result AliveObject Alive object received is returned to the sender

Error:

Parameter name Type Description

code ProtocolErrorCode Error code

message String optional message

 iVRI – fase 2: Deliverable 1ab 40

 Functional use-cases

8.1 Establish connection with the Facilities
Name Establish stable connection with the Facilities

Description /
context

An ITS Application is started and initiates connection with the Facilities,
methods and objects exchanged are described.

Actor ITS Application

Goal The ITS Application is authenticated and authorised to be connected with
the Facilities.

Pre-condition(s) ITS Application is configured with
- Facilities connection details

ITS Application and Facilities is configured with

- Application username
- Application password
- application type
- (Optional) TLS certificate for the Facilities

Trigger ITS Application connects with the Facilities TCP port

ITS Application
functions

When the connection requires TLS, the ITS-A checks the authenticity of
the Facilities as part of the TLS negotiation.

ITS-A registers with the Facilities using the Register method

- Passes a RegistrationRequest object

Waits for RegistrationResponse object

(Optional) ITS-A provides meta-data relevant for the Facilities

After connection success,

- Stores session identifier
- Executes the connection health use-case (see 8.4).

Facilities functions Waits for connection requests from ITS Applications.

When a TCP connection is initiated AND the connection must be secured
with TLS:

- Initiates the TLS negotiation
- manages the TLS session creation.

Waits for Registration request by the ITS Application.

Checks Registration of the ITS Application against configured information
according to decisions in Table 1 and Table 2

When successful registration

- Sets Application session state = Connected
- Creates a session identifier
- Sends RegistrationResponse
- Starts connection health use-case (see 8.4)

Post-conditions Application session state= Connected

Exceptions Facilities rejects ITS Application provided credentials and/or type
- Facilities provides failure in response to registration request
- Facilities terminates session

 iVRI – fase 2: Deliverable 1ab 41

The Application username is already used by an active session

- Reject connection attempt
Note: In case a lingering connection is present, the keep alive use-case
will remove the dead application.

End result ITS-A has created a session and can start to access the FI Objects.

8.2 Break connection with the Facilities
Name Break connection with the Facilities

Description /
context

An ITS Application has a session with the Facilities, it needs to terminate
the session.

Actor ITS Application

Goal The ITS Application is deregistered and disconnected from the Facilities.

Pre-condition(s) Application session state = Connected

Trigger ITS Application internal logic
- Sends a Deregister request

ITS Application
functions

Waits for response from the Facilities

Response = OK

- Terminates TLS and TCP sessions

OR Response = ERROR

- Terminates TLS and TCP sessions
- Logs error

Facilities functions Received DeregisterRequest
- Executes decisions in Table 2

Post-conditions Application session state = Disconnected

Exceptions ITS-A receives no response
- Terminates TLS and TCP sessions
- Logs error

End result ITS Application has no session with the Facilities

8.3 Revoke ITS Application authorisation
Follows decision table for the Connected state, see Table 2

8.4 Check connection health
Follows decision table for the Connected state, see Table 2

 iVRI – fase 2: Deliverable 1ab 42

 Exception handling

This chapter focuses on exceptions which can occur and describes how ITS-A and/or
Facilities shall detect the exception and respond to it. This chapter does not address
exceptions caused by a specific protocol implementation, but addresses implementation-
independent exceptions only.

9.1 Network
ID Title Description

1 IP network problems Both the Facilities and ITS-A shall detect problems in the
network connection and disconnect the connection if a network
problem is detected.
ITSA shall take the initiative to re-connect.
Examples of TCP/IP network problems:

- the connection is lost;
- a read or write operation on the TCP socket reports an

error;
- data is delayed;
- One peer has disconnected but the other peer assumes

the connection is still alive.

2 Message bursts Both the Facilities and an ITS-A may send and receive a burst of
messages.

The sending entity is responsible for sending messages in the
proper order.

A time tick is sent with each message from the Facilities and
ITS-A, this tick can be used to handle timing.

3 Multiple sockets A network host may host more than one ITS-A, giving them all
the same source IP address. The Facilities X-FI implementation
shall

- not close an existing socket when a peer tries to create
a new connection with an IP address of an already
connected peer

- allow minimal 10 concurrent TCP-session in total

4 Socket error If the Facilities detects a socket error for an established session
it shall immediately deregister an ITS-A when the TCP socket of
this ITS-A is closed.

9.2 Session
ID Title Description

1 Registration by already
registered Application

The Facilities shall have one and only one session with an ITS-
A. It may be possible that a previous session is still seen as
active by the Facilities while an ITS-A tries to reconnect the
session after a failure.

The Facilities shall:

- Accept only one session per Application username.
- not close an existing session when a peer tries to

register a new session with the same Application
username

- Report rejection to the peer trying to register the new
session (Response ProtocolErrorCode = NotAuthorised)

 iVRI – fase 2: Deliverable 1ab 43

- Close socket connection with this peer

The ITS-A shall:
Implement the back off algorithm as described in section 5.9
when it is refused connection (i.e. the time between registration
attempts shall increase as the number of failures increases)

2 Login with incorrect
credentials

A peer may provide incorrect credentials, i.e. an unknown
Application username or incorrect password not matching the
Application known to the Facilities
.
The Facilties shall not allow sessions with peers providing
incorrect credentials.

The Facilities shall:

- Provide feedback on the incorrect login with the
NotAuthorised ProtocolErrorCode.

- Close socket connection with this peer
- Add messages to security log / alarm

3 Alive check fails When alive check fails, the network or processing has failed to
recover within the expected time. Both the ITS-A and the FI
monitors the alive objects from the peer and regards the session
as lost.

The Facilities shall:

- reset the session states
- close the sockets
- Log error situation

The ITS-A shall

- close the sockets
- re-establish the session if needed.
- Log error situation

Back off algorithm:
The ITS-A tries to initiate a new session following the back off
procedure (see 5.9).

4 Facilities restart (soft) During active sessions it is possible that the Facilities needs to
restart the interface in a soft way. All existing sessions must be
disconnected.

The Facilities shall:

- notify the ITS-A’s of the imminent restart generating a
SessionEvent with FacilitiesStopping code

- deregister all ITS-A‘s
- discard (silently) any new registration attempts

The ITS-A shall:

- handle proper deregistration
- try to re-connect to the Facilities and follow normal back

off mechanism as defined in section 5.9

5 No Registration A peer may connect to the Facilities, but fail to provide a
Registration request.

The Facilities shall

- Wait for the ITS-A Alive timeout defined in 5.7
- Terminate the connection

 iVRI – fase 2: Deliverable 1ab 44

6 Registration within active
session

A peer may provide a Registration request within an active
(Connected) session

The Facilities shall:

- Deregister the active (Connected) session

7 Deregistration from an
ITS-A that is not
registered.

The Facilities shall
- Reply with ProtocolErrorCode(0)

9.3 Protocol compatibility
ID Title Description

1 Incompatible protocol An application (not supporting the X-FI) connects to the TCP
socket and starts communicating.

The Facilities shall:

- Parse the incoming data stream, taking into account that
the data may not be coming for a peer supporting the X-
FI protocol.

- Not crash as result of another application opening and
using the TCP port.

- Disconnect the connection if the parsing of the incoming
data fails.

- Disconnect the connection after an idle timeout.

2 Application using older
(supported) protocol
version

Updates to the X-FI interface specifications (this document and
the TLC-FI ([Ref 4]) and RIS-FI specifications ([Ref 5])) shall
take compatibility into account, allowing an ITS-A to
communicate with a Facilities implementing a newer version of
the X-FI.

3 Application using older
(un-supported) protocol
version

Updates to the X-FI interface specifications (this document and
the TLC-FI ([Ref 4]) and RIS-FI specifications ([Ref 5])) shall
explicitly state a version incompatibility.
The Facilities shall

- detect this situation and report this explicitly back to the
ITS-A

The ITS-A shall:

- stop communicating with the Facilities

4 Application using newer
protocol version

The Facilities uses an older version of the X-FI protocol than the
ITS-A.
ITS-A shall detect this situation and interface with this Facilities
correctly based on the functionality provided by the X-FI.

The Facilities assumes that ITS-A will deal with this issue.

9.4 Timing
ID Title Description

1 Time-tick inconsistency The time-tick of the Facilities may be slightly faster or slower
than the time-tick of ITS-A.
Both ITS-A and the Facilities shall take into account that:

 iVRI – fase 2: Deliverable 1ab 45

- Messages from the other peer are asynchronous.
- The slower peer may receive, every once in a while,

multiple sets of messages within the same system tick.
- The faster peer may receive, every once in a while, no

messages during a system tick.

2 Time-tick overflow The ticks is an ever increasing value which identifies the delta
time between updates. The value of the tick overflows
approximately every 49 days.

Both peers shall handle an overflow of the tick value so that it is
possible to explicitly determine the elapsed tick time between
two consecutive ticks.

9.5 Messages
ID Title Description

1 Unknown methods A peer may receive a not supported (undefined) method; i.e. a
method which is not implemented in the peer or the other peer
uses a newer version of the protocol with more functionality.

When a response is expected, the peer shall send a reply
message containing a JSON error object with error code -32601
(Method not found) as defined in section 11.

2 Unknown object types A peer may receive a not supported (undefined) object type.

The receiver shall:

- Reject the message
- Discard the object(s) updated in this message
- When part of a request: Send an error code

UnknownObjectType
- When notification: Log error
- Close connection

3 Unknown attributes A peer may receive a not supported (undefined) attribute.
The peer shall ignore the unknown attributes and continue
processing the remaining attributes.

4 Invalid attribute value
types

A peer may receive a known attribute of an incorrect type. Each
attribute is of a specific type, String, Number, etc.
The peer shall:

- Reject the attribute
- Discard the object(s) updated in this message
- When part of a request: Send an error code

InvalidAttributeType
- When notification: Log error
- Close connection

5 Invalid attribute values A peer may receive an attribute with an incorrect value. E.g.
unknown enumeration, larger than maximum value etc.

The peer shall:

- Reject the attribute
- Discard the object(s) updated in this message
- When part of a request: Send an error code

InvalidAttributeValue
- When notification: Log error
- Close connection

6 Invalid Object reference A peer may receive an unknown object reference.
The peer shall:

- Reject the attribute

 iVRI – fase 2: Deliverable 1ab 46

- Discard the object(s) updated in this message
- When part of a request: Send an error code

InvalidObjectReference
- When notification: Log error
- Close connection

7 Invalid JSON message A peer sends an invalid JSON encoded message.
An invalid encoded JSON message points to incorrect
implementation of the peer.
The receiver shall:

- be able to detect such a situation
- update diagnostics
- stop processing messages from this peer
- deregister from the Facilities (ITS-A)
- disconnect session

8 Buffer overflow A peer sends a large valid JSON encoded message. As result
the message doesn’t fit the number of bytes buffered by the
receiving peer.

A peer shall:

- be able to detect such a situation
- discard the complete message
- stop processing messages from this peer
- deregister from the Facilities (ITS-A)
- disconnect session

 iVRI – fase 2: Deliverable 1ab 47

 IRS Requirement tracing

10.1 TLC-FI

This section provides a statement of the compliance of this IDD with the Beter Benutten
Vervolg, project iVRI, Deliverable G2, IRS TLC Facilities Interface v1.2, jan 2016 (see [Ref
2])
The following statements are made for compliance with a requirement:

 C = Compliant

 P = Partially compliant

 N = Not compliant

A list of sections in this document in which the requirement is supported is listed and a
comment describing the compliance statement.

Note that the list provides all requirements of the IRS, while a number of requirements is
supported by the accompanying TLC-FI IDD, Beter Benutten Vervolg, project iVRI – fase 2,
Deliverable 1a IDD TLC Facilities Interface v1.1, dec 2016 (see [Ref 4]). In such cases, the
sections column (also) refers to this document.

Requirement Compliance Sections Comments

IRS-TLCFI-TIME-001 C 5.3

IRS-TLCFI-PROT-001 C 4.2

IRS-TLCFI-PROT-002 C 4.2

IRS-TLCFI-PROT-003 C 4.2, 4.3

IRS-TLCFI-COM-001 C 4.6

IRS-TLCFI-COM-002 P 4.6 Updates on state changes, no
periodic updates

IRS-TLCFI-COM-003 C 5.4.3

IRS-TLCFI-COM-004 N No periodic updates supported

IRS-TLCFI-COM-005 P See [Ref 4] Filtering based on type and subset of
object ids

IRS-TLCFI-COM-006 N - No pre-defined filters supported

IRS-TLCFI-REG-001 P 6.3, 7.1, 8.1 No priority levels

IRS-TLCFI-REG-002 C 6.3

IRS-TLCFI-REG-003 N - No priority levels

IRS-TLCFI-REG-004 C 6.4, 7.2, 8.2

IRS-TLCFI-REG-005 C 9.2

IRS-TLCFI-REG-006 C 5.4, 6.6, 7.3

IRS-TLCFI-REG-007 C 5.4.3, 5.5,
9.2

IRS-TLCFI-ICA-REG-001 C See [Ref 4]

IRS-TLCFI-ICA-AD-001 C See [Ref 4]

IRS-TLCFI-ICA-AD-002 C See [Ref 4]

 iVRI – fase 2: Deliverable 1ab 48

IRS-TLCFI-ICA-AD-003 C See [Ref 4]

IRS-TLCFI-ICA-AD-004 C See [Ref 4]

IRS-TLCFI-ICA-AD-005 C See [Ref 4]

IRS-TLCFI-ICA-AD-006 N An ITS-CLA controls one
intersection. Multiple sessions are
needed.

IRS-TLCFI-ICA-AD-007 C See [Ref 4]

IRS-TLCFI-TIF-OD-001 P See [Ref 4] No pre-defined filters

IRS-TLCFI-TIF-OD-002 C 6, See [Ref
4]

IRS-TLCFI-TIF-OD-003 C See [Ref 4]

IRS-TLCFI-TIF-OD-004 C 6.1, 6.2,
See [Ref 4]

IRS-TLCFI-TIF-OD-005 P See [Ref 4] No addable / deletable objects

IRS-TLCFI-TIF-OD-006 C 5.1, 6.2,
See [Ref 4]

IRS-TLCFI-TIF-OM-001 N - No addable / deletable objects

IRS-TLCFI-TIF-OM-002 C 6.2, See
[Ref 4]

IRS-TLCFI-TIF-OM-003 C 6.2, See
[Ref 4]

IRS-TLCFI-TIF-OM-004 N No addable / deletable objects

IRS-TLCFI-TIF-OT-001 C See [Ref 4]

IRS-TLCFI-TIF-OT-002 P See [Ref 4] Object doesn't contain:
- Fault state
- Special function variables
- Active ITS-CLA (security concern)

IRS-TLCFI-TIF-OT-003 P See [Ref 4] The ITS-CLA is not informed of a
higher priority request

IRS-TLCFI-TIF-OT-004 P See [Ref 4] Object doesn't contain:
- Internal signal group state
(including format)
- Reason for deviation from external
state
- Fault state (deadlock, lamps)
- Special function variables and
status
Meta:
- Type (vehicle, bicycle, pedestrian,
tram)
- Related detectors

IRS-TLCFI-TIF-OT-005 C See [Ref 4]

IRS-TLCFI-TIF-OT-006 C See [Ref 4]

IRS-TLCFI-TIF-OT-007 P See [Ref 4] Object doesn't contain:
Meta: Type

IRS-TLCFI-TIF-OT-008 C See [Ref 4]

 iVRI – fase 2: Deliverable 1ab 49

IRS-TLCFI-TIF-OT-009 C See [Ref 4]

IRS-TLCFI-TIF-OT-010 C See [Ref 4]

IRS-TLCFI-TIF-OT-011 C See [Ref 4]

IRS-TLCFI-TIF-OT-012 P 6.3,
See [Ref 4]

Objects don't provide:
- Intersection topology data
- ITS - Application status (security
concern)
- TLC Capability classes

IRS-TLCFI-QA-PERF-001 C NA

IRS-TLCFI-QA-PERF-002 C 9.1 No limit imposed in technology,
objects or methods

IRS-TLCFI-QA-PERF-003 C NA No limit imposed in technology,
objects or methods

IRS-TLCFI-QA-PERF-004 C NA No limit imposed in technology,
objects or methods

IRS-TLCFI-QA-PERF-005 C NA No limit imposed in technology,
objects or methods

IRS-TLCFI-QA-PERF-006 C NA No limit imposed in technology,
objects or methods

IRS-TLCFI-QA-PERF-007 C NA No limit imposed in technology,
objects or methods

IRS-TLCFI-QA-AVAIL-001 C See [Ref 4]

IRS-TLCFI-QA-AVAIL-002 N - No quality information is provided by
an ITS-CLA

IRS-TLCFI-QA-AVAIL-003 C 5.2, See
[Ref 4]

IRS-TLCFI-QA-AVAIL-004 N - No reliance on UTC for the object
exchange

IRS-TLCFI-QA-EVO-001 C 9.3

 iVRI – fase 2: Deliverable 1ab 50

 Appendix: JSON-RPC 2.0 Specification

Below is a copy of the JSON-RPC 2.0 specification of http://www.jsonrpc.org/specification.

Origin Date:
 2010-03-26 (based on the 2009-05-24 version)
Updated:
 2013-01-04
Author:
 JSON-RPC Working Group <json-rpc@googlegroups.com>

1 Overview
JSON-RPC is a stateless, light-weight remote procedure call (RPC) protocol. Primarily this
specification defines several data structures and the rules around their processing. It is
transport agnostic in that the concepts can be used within the same process, over sockets,
over http, or in many various message passing environments. It uses JSON (RFC 4627) as
data format.

It is designed to be simple!

2 Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119.

Since JSON-RPC utilizes JSON, it has the same type system (see http://www.json.org or
RFC 4627). JSON can represent four primitive types (Strings, Numbers, Booleans, and
Null) and two structured types (Objects and Arrays). The term "Primitive" in this
specification references any of those four primitive JSON types. The term "Structured"
references either of the structured JSON types. Whenever this document refers to any
JSON type, the first letter is always capitalized: Object, Array, String, Number, Boolean,
Null. True and False are also capitalized.

All member names exchanged between the Client and the Server that are considered for
matching of any kind should be considered to be case-sensitive. The terms function,
method, and procedure can be assumed to be interchangeable.

The Client is defined as the origin of Request objects and the handler of Response objects.
The Server is defined as the origin of Response objects and the handler of Request
objects.

One implementation of this specification could easily fill both of those roles, even at the
same time, to other different clients or the same client. This specification does not address
that layer of complexity.

3 Compatibility
JSON-RPC 2.0 Request objects and Response objects may not work with existing JSON-
RPC 1.0 clients or servers. However, it is easy to distinguish between the two versions as
2.0 always has a member named "jsonrpc" with a String value of "2.0" whereas 1.0 does
not. Most 2.0 implementations should consider trying to handle 1.0 objects, even if not the
peer-to-peer and class hinting aspects of 1.0.

http://www.jsonrpc.org/specification
https://groups.google.com/forum/#%21forum/json-rpc
http://www.json.org/
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.json.org/
http://www.ietf.org/rfc/rfc4627.txt

 iVRI – fase 2: Deliverable 1ab 51

4 Request object
A rpc call is represented by sending a Request object to a Server. The Request object has
the following members:
jsonrpc
 A String specifying the version of the JSON-RPC protocol. MUST be exactly "2.0".
method

A String containing the name of the method to be invoked. Method names that begin
with the word rpc followed by a period character (U+002E or ASCII 46) are reserved
for rpc-internal methods and extensions and MUST NOT be used for anything else.

params
A Structured value that holds the parameter values to be used during the invocation
of the method. This member MAY be omitted.

id
An identifier established by the Client that MUST contain a String, Number, or NULL
value if included. If it is not included it is assumed to be a notification. The value
SHOULD normally not be Null [1] and Numbers SHOULD NOT contain fractional
parts [2]

The Server MUST reply with the same value in the Response object if included. This
member is used to correlate the context between the two objects.

[1] The use of Null as a value for the id member in a Request object is discouraged,
because this specification uses a value of Null for Responses with an unknown id. Also,
because JSON-RPC 1.0 uses an id value of Null for Notifications this could cause
confusion in handling.

[2] Fractional parts may be problematic, since many decimal fractions cannot be
represented exactly as binary fractions.

4.1 Notification
A Notification is a Request object without an "id" member. A Request object that is a
Notification signifies the Client's lack of interest in the corresponding Response object, and
as such no Response object needs to be returned to the client. The Server MUST NOT
reply to a Notification, including those that are within a batch request.

Notifications are not confirmable by definition, since they do not have a Response object to
be returned. As such, the Client would not be aware of any errors (like e.g. "Invalid
params","Internal error").

4.2 Parameter structures
If present, parameters for the rpc call MUST be provided as a Structured value. Either by-
position through an Array or by-name through an Object.

 by-position: params MUST be an Array, containing the values in the Server
expected order.

 by-name: params MUST be an Object, with member names that match the Server
expected parameter names. The absence of expected names MAY result in an error
being generated. The names MUST match exactly, including case, to the method's
expected parameters.

5 Response object

http://www.jsonrpc.org/specification#id1
http://www.jsonrpc.org/specification#id2

 iVRI – fase 2: Deliverable 1ab 52

When a rpc call is made, the Server MUST reply with a Response, except for in the case of
Notifications. The Response is expressed as a single JSON Object, with the following
members:

jsonrpc

A String specifying the version of the JSON-RPC protocol. MUST be exactly "2.0".
result

This member is REQUIRED on success.
This member MUST NOT exist if there was an error invoking the method.
The value of this member is determined by the method invoked on the Server.

error
This member is REQUIRED on error.
This member MUST NOT exist if there was no error triggered during invocation.
The value for this member MUST be an Object as defined in section 5.1.

id
This member is REQUIRED.
It MUST be the same as the value of the id member in the Request Object.
If there was an error in detecting the id in the Request object (e.g. Parse
error/Invalid Request), it MUST be Null.
Either the result member or error member MUST be included, but both members
MUST NOT be included.

5.1 Error object
When a rpc call encounters an error, the Response Object MUST contain the error member
with a value that is a Object with the following members:
code

A Number that indicates the error type that occurred.
This MUST be an integer.

message
A String providing a short description of the error.
The message SHOULD be limited to a concise single sentence.

data
A Primitive or Structured value that contains additional information about the error.
This may be omitted.
The value of this member is defined by the Server (e.g. detailed error information,
nested errors etc.).
The error codes from and including -32768 to -32000 are reserved for pre-defined
errors. Any code within this range, but not defined explicitly below is reserved for
future use. The error codes are nearly the same as those suggested for XML-RPC
at the following url: http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php

code message meaning

-32700 Parse error
Invalid JSON was received by the server.
An error occurred on the server while parsing the
JSON text.

-32600 Invalid Request The JSON sent is not a valid Request object.

-32601 Method not found The method does not exist / is not available.

-32602 Invalid params Invalid method parameter(s).

-32603 Internal error Internal JSON-RPC error.

-32000 to -32099 Server error Reserved for implementation-defined server-errors.

The remainder of the space is available for application defined errors.

http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php

 iVRI – fase 2: Deliverable 1ab 53

6 Batch
To send several Request objects at the same time, the Client MAY send an Array filled with
Request objects.

The Server should respond with an Array containing the corresponding Response objects,
after all of the batch Request objects have been processed. A Response object SHOULD
exist for each Request object, except that there SHOULD NOT be any Response objects
for notifications. The Server MAY process a batch rpc call as a set of concurrent tasks,
processing them in any order and with any width of parallelism.

The Response objects being returned from a batch call MAY be returned in any order within
the Array. The Client SHOULD match contexts between the set of Request objects and the
resulting set of Response objects based on the id member within each Object.

If the batch rpc call itself fails to be recognized as an valid JSON or as an Array with at least
one value, the response from the Server MUST be a single Response object. If there are no
Response objects contained within the Response array as it is to be sent to the client, the
server MUST NOT return an empty Array and should return nothing at all.

7 Examples
Syntax:
--> data sent to Server

<-- data sent to Client

rpc call with positional parameters:

--> {"jsonrpc": "2.0", "method": "subtract", "params": [42, 23], "id": 1}

<-- {"jsonrpc": "2.0", "result": 19, "id": 1}

--> {"jsonrpc": "2.0", "method": "subtract", "params": [23, 42], "id": 2}

<-- {"jsonrpc": "2.0", "result": -19, "id": 2}

rpc call with named parameters:

--> {"jsonrpc": "2.0", "method": "subtract", "params": {"subtrahend": 23,

"minuend": 42}, "id": 3}

<-- {"jsonrpc": "2.0", "result": 19, "id": 3}

--> {"jsonrpc": "2.0", "method": "subtract", "params": {"minuend": 42,

"subtrahend": 23}, "id": 4}

<-- {"jsonrpc": "2.0", "result": 19, "id": 4}

a Notification:

--> {"jsonrpc": "2.0", "method": "update", "params": [1,2,3,4,5]}

--> {"jsonrpc": "2.0", "method": "foobar"}

rpc call of non-existent method:

--> {"jsonrpc": "2.0", "method": "foobar", "id": "1"}

<-- {"jsonrpc": "2.0", "error": {"code": -32601, "message": "Method not

found"}, "id": "1"}

rpc call with invalid JSON:

 iVRI – fase 2: Deliverable 1ab 54

--> {"jsonrpc": "2.0", "method": "foobar, "params": "bar", "baz]

<-- {"jsonrpc": "2.0", "error": {"code": -32700, "message": "Parse

error"}, "id": null}

rpc call with invalid Request object:

--> {"jsonrpc": "2.0", "method": 1, "params": "bar"}

<-- {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid

Request"}, "id": null}

rpc call Batch, invalid JSON:

--> [

 {"jsonrpc": "2.0", "method": "sum", "params": [1,2,4], "id": "1"},

 {"jsonrpc": "2.0", "method"

]

<-- {"jsonrpc": "2.0", "error": {"code": -32700, "message": "Parse

error"}, "id": null}

rpc call with an empty Array:

--> []

<-- {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid

Request"}, "id": null}

rpc call with an invalid Batch (but not empty):

--> [1]

<-- [

 {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid

Request"}, "id": null}

]

rpc call with invalid Batch:

--> [1,2,3]

<-- [

 {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid

Request"}, "id": null},

 {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid

Request"}, "id": null},

 {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid

Request"}, "id": null}

]

rpc call Batch:

--> [

 {"jsonrpc": "2.0", "method": "sum", "params": [1,2,4], "id": "1"},

 {"jsonrpc": "2.0", "method": "notify_hello", "params": [7]},

 {"jsonrpc": "2.0", "method": "subtract", "params": [42,23], "id":

"2"},

 {"foo": "boo"},

 {"jsonrpc": "2.0", "method": "foo.get", "params": {"name":

"myself"}, "id": "5"},

 {"jsonrpc": "2.0", "method": "get_data", "id": "9"}

]

<-- [

 iVRI – fase 2: Deliverable 1ab 55

 {"jsonrpc": "2.0", "result": 7, "id": "1"},

 {"jsonrpc": "2.0", "result": 19, "id": "2"},

 {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid

Request"}, "id": null},

 {"jsonrpc": "2.0", "error": {"code": -32601, "message": "Method

not found"}, "id": "5"},

 {"jsonrpc": "2.0", "result": ["hello", 5], "id": "9"}

]

rpc call Batch (all notifications):

--> [

 {"jsonrpc": "2.0", "method": "notify_sum", "params": [1,2,4]},

 {"jsonrpc": "2.0", "method": "notify_hello", "params": [7]}

]

<-- //Nothing is returned for all notification batches

8 Extensions
Method names that begin with rpc. are reserved for system extensions, and MUST NOT be
used for anything else. Each system extension is defined in a related specification. All
system extensions are OPTIONAL.

Copyright (C) 2007-2010 by the JSON-RPC Working Group

This document and translations of it may be used to implement JSON-RPC, it may be

copied and furnished to others, and derivative works that comment on or otherwise explain it

or assist in its implementation may be prepared, copied, published and distributed, in whole

or in part, without restriction of any kind, provided that the above copyright notice and this

paragraph are included on all such copies and derivative works. However, this document

itself may not bemodified in any way.

The limited permissions granted above are perpetual and will not be revoked.

This document and the information contained herein is provided "AS IS" and ALL

WARRANTIES, EXPRESS OR IMPLIED are DISCLAIMED, INCLUDING BUT NOT

LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN

WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

	1 Introduction
	1.1 Overview
	1.2 Purpose and scope
	1.3 Advise for the reader
	1.4 Document conventions

	2 References
	3 Acronyms, abbreviations and concepts
	4 Technical description
	4.1 Introduction
	4.2 Network connections
	4.3 Network security
	4.3.1 Private network
	4.3.2 TLS

	1.1
	1.1
	1.1
	1.1
	4.4 Data encoding - JSON
	4.5 Data transport
	4.6 JSON-RPC usage for X-FI

	5 Functional description
	5.1 Objects
	5.2 Time reference
	5.3 Calendar time (UTC)
	5.4 Method categories
	5.4.1 Protocol methods
	5.4.2 Data access methods
	5.4.3 Data subscriptions and notifications

	5.5 Session States
	1.1
	1.1
	5.6 Alive checking
	5.7 Timing
	5.8 Protocol versions
	5.9 Back off procedure

	6 Objects
	6.1 Template FI Object definition
	6.1.1 Keywords

	6.2 Base
	Length
	Location
	ObjectData
	ObjectDataContent (abstract)
	ObjectEvent
	ObjectEventContent (abstract)
	ObjectID
	ObjectMeta
	ObjectMetaContent (abstract)
	ObjectReference
	ObjectStateUpdate
	ObjectStateUpdateContent (abstract)
	ObjectStateUpdateGroup
	ObjectType (abstract)
	ProtocolErrorCode
	SessionID
	Speed
	Ticks
	Timestamp

	6.3 Registration
	RegistrationRequest
	RegistrationReply
	ApplicationPassword
	ApplicationURI
	ApplicationUsername
	ApplicationType
	ProtocolVersion

	6.4 Deregistration
	DeregistrationRequest
	DeregistrationReply

	6.5 Session
	SessionEvent
	SessionEventCode
	SessionEventInformation

	6.6 Alive
	AliveObject

	7 Methods
	7.1 Register
	7.2 Deregister
	7.3 Alive

	8 Functional use-cases
	8.1 Establish connection with the Facilities
	8.2 Break connection with the Facilities
	8.3 Revoke ITS Application authorisation
	8.4 Check connection health

	9 Exception handling
	9.1 Network
	9.2 Session
	9.3 Protocol compatibility
	9.4 Timing
	9.5 Messages

	10 IRS Requirement tracing
	10.1 TLC-FI

	11 Appendix: JSON-RPC 2.0 Specification

